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Overview

•Cell Broadband Engine (Cell/B.E.)

•Cell Superscalar (CellSs)

•Bypassing

•Motivation

• Implementation

•Results

• Lazy write-back

• Just-In-Time renaming

•Current status and ongoing work 
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CellSs

Runtime environment that automatically parallelizes 

sequential user applications for the Cell/B.E.
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CellSs: sample code (sparse LU)

int main(int argc, char **argv) {
int ii, jj, kk;
…

 for (kk=0; kk<NB; kk++) {

lu0(A[kk][kk]);

      for (jj=kk+1; jj<NB; jj++)

        if (A[kk][jj] != NULL) 

   fwd(A[kk][kk], A[kk][jj]);

      for (ii=kk+1; ii<NB; ii++) 

        if (A[ii][kk] != NULL) {

          bdiv (A[kk][kk], A[ii][kk]);

            for (jj=kk+1; jj<NB; jj++) 

              if (A[kk][jj] != NULL) {

                if (A[ii][jj]==NULL)

                  A[ii][jj]=allocate_clean_block();

                  bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

               }

       }

   }
}

void lu0(float *diag);

void bdiv(float *diag, float *row);

void bmod(float *row, float *col, float *inner);

void fwd(float *diag, float *col);
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CellSs: sample code (sparse LU)

int main(int argc, char **argv) {
int ii, jj, kk;
…

 for (kk=0; kk<NB; kk++) {

lu0(A[kk][kk]);

      for (jj=kk+1; jj<NB; jj++)

        if (A[kk][jj] != NULL) 

   fwd(A[kk][kk], A[kk][jj]);

      for (ii=kk+1; ii<NB; ii++) 

        if (A[ii][kk] != NULL) {

          bdiv (A[kk][kk], A[ii][kk]);

            for (jj=kk+1; jj<NB; jj++) 

              if (A[kk][jj] != NULL) {

                if (A[ii][jj]==NULL)

                  A[ii][jj]=allocate_clean_block();

                  bmod(A[ii][kk], A[kk][jj], A[ii][jj]);

               }

       }

   }
}

#pragma css task inout(diag[B][B])

void lu0(float *diag);

#pragma css task input(diag[B][B]) inout(row[B][B])

void bdiv(float *diag, float *row);

#pragma css task input(row[B][B],col[B][B]) inout(inner[B][B])

void bmod(float *row, float *col, float *inner);

#pragma css task input(diag[B][B]) inout(col[B][B])
void fwd(float *diag, float *col);
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CellSs: compiler
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CellSs: runtime libraries
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CellSs: runtime behaviour (matrix multiply)

• Visualization of the runtime phases in function of time using Paraver

• Each phase is assigned a different colour

• SPE task execution

• SPE DMA wait

• Thread idling 



CellSs: runtime behaviour (matrix multiply)



Bypassing: motivation

A new architecture, but the song remains the same:

Improve the performance

•General computation pattern

•PPE generates work for SPEs

•SPEs repeatedly fetch work and perform computation

•Traditional approach vs. bypassing approach

•Cell/B.E. Interconnect

•Element Interconnect Bus (EIB)

Let's take a closer look at code executing on the Cell/B.E.:



Bypassing: motivation: general computation pattern

stage in execute stage out
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Bypassing: motivation: Cell/B.E. interconnect

Element Interconnect Bus (EIB):

 “Another class of bottlenecks is contention. For instance, if four SPEs are trying to move data

 to or from the MIC at the same time, their aggregate bandwidth of 102.4GB/sec completely 

swamps the MIC's bandwidth of 25.6GB/sec. Similarly, while the SPEs are trying to interact with 

the MIC, the PPE may have degraded access to main memory. When a unit is overwhelmed, 

it might need to retry commands, which in turn slows traffic down even further.”

David Krolak, “Unleashing the Cell Broadband Engine Processor: the Element Interconnect Bus” 



Bypassing: motivation

How does contention and blocking influence the execution?

• Countermeasures:

• software cache in the LS of an SPE

• double buffering

• ???



Bypassing: motivation

Transfer objects between the LS of SPEs

without going through main memory

•General idea:

•Effect on PPE threads?



Bypassing: motivation
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Bypassing: implementation

• General solution

• SPE runtime autonomously decides to go to main memory or to 

bypass from another SPE 

• No need to tailor the bypassing mechanism to a specific 

application

• Implemented using the SPE's Atomic Cache Unit (ACU)

• Location of software objects in the system is updated using the 

ACU 

• Distributed solution

• Makes good use of hardware features



Bypassing: results: opportunities for bypassing

Are there opportunities to bypass data from one SPE to another?



Bypassing: results: reduction in wait time

Does the wait time effectively decrease when bypassing?



Lazy write-back: concept

#pragma css task inout(a)

void foo(int a[4096]);

int a[4096];

int main(int argc, char *argv[])

{

...

foo(a);

...

foo(a);

...

return 0;

}

main memory

1 stage in

2 bypass

(3 stage out)

(4 stage out)

• Do not tranfer objects back to main memory unless strictly necessary

• Exploit the information available in the bypassing mechanism

• object versions

• read count of a version

• Token passing to avoid early stage-outs

a[4096]

SPE1

buffer

SPE2

buffer



Lazy write-back: example

main memory

1 stage in

2 bypass

(3 stage out)

(7 stage out)

1. Task 1 reads and writes a → Obj(a,1)

2. Task 2 reads a (Obj(a,1))

3. Task 3 reads a (Obj(a,1))

4. Task 4 reads and writes a → Obj(a,2)

5. Task 5 reads a (Obj(a,2))

a[4096]

SPE1

buffer

SPE2

buffer

• Below is the perfect scenario

• Variations possible depending on 
relative ordering of execution of tasks 
and schedule

SPE3

buffer

1
2

3

5
4

4 bypass

8 stage out

6 bypass

(5 stage out)



Lazy write-back: results

Can we avoid a significant fraction of the tranfers to main memory?



Renaming: traditional concept

#pragma css task inout(a)

void foo(int a[4096]);

#pragma css task out(a)

void moo(int a[4096]);

int a[4096];

int main(int argc, char *argv[])

{

...

...

...

return 0;

}

main memory original object, “user space”

renaming, “CellSs space”

• Renaming improves parallelism at the cost of extra 
memory.

• Centralized

A[4096]

A_ren[4096]

foo(a)

moo(a)



Renaming: traditional concept

SPE1 SPE2

main memory

A[4096]

A_ren[4096]

buffer A buffer B

foo moo

Explicit renaming

in main memory

Explicit renaming

in LS



Renaming: JIT renaming

SPE1 SPE2

main memory

A[4096]

bypass buffer B

foo moo

original object

in main memory

implicit renaming

in LS

buffer A



Renaming: JIT renaming

SPE main memory

A[4096]

bypass

buffer B

foo

moo

original object

in main memory

buffer A

• JIT renaming sometimes requires an SPE to bypass from 
itself. 



Renaming: JIT renaming

main memorystage out

original user data

renaming pool

renaming

• Decision between stage-out or renaming made at the 
very last moment

• No synchronisation with PPE unless renaming pool 
too small

• Relation between scheduling and renaming

SPE



Ongoing work

• verification of the bypassing protocol

• studying ways to incorporate scheduling

• distributed scheduling

• shared representation of the Task Dependence Graph (TDG)



Questions?



task dependence graph (TDG)



Speedup results

• Very much work in progress

• Linear algebra applications on 16x16 hypermatrices 
of 64x64 floats

• Matrix multiplication, 2 variants of the Cholesky 
decomposition, a Jacobi computation and an LU 
decomposition.
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